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Dynanic linking orovides a flexible and convenient wav tot resolving a
nrocedure's symholic references to external nrocedures and data., It is dis-
tinguished by when a symholic reference is bound to the (virtual}l address of
the external object, viz., binding is deferred until the first actual refer-~
ence during execution. Yet in snite of the significant henefits and more than
a decade to assimilate the technology, the Multics system remains as essen—
tiallv the sinqular working examnle. Several authors of articles (11 and
ooerating systems texes (2,3] imoly that 2 major reason for this limited use
is the svecial hardware required. We have addressed this limitation and Hhave
develoved a dynanic linker design that requires no more hardware suvvort that

is orovided by modern microcomputers.
A. Rackqround

We have used vultics [4) as the standard tor the dvnamic linking cava-
bilities we would 1like to nrovide. Multics has an inteqrated hardware and
sottware design with the hardware features that strongjly supmort dynamic link-
ing “eing (1) indirect addressing through memory, (?2) a linkage €ault during
indirection, (3) segmentation, and (A) Aemand naging.

Although commercial microcomouters do not have the range of hardware
support tound in Multics, they are increasingly cavahle. This has naturally
led to increased exvectations for services, and extensive cavabilities such as
tull~functioned lanjuages (e.q., PL/I) and multiproqrarmed, multiorocessor

onerating systems (51 are emerqging. We believe that dynamic linking is an

attractive addition to this growing set of system canabilitfes.
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3, 0Objectives

We want out desiqgn to orovide the usual henetits of dynamic linkimg. LY
nrocess should include only those procedures and data actually reterenced dur-
inq execution, vice those included in the nrogram. Similarly. during software
develomment oroqrams may be run with reterences to drocedures (e.q., error
routines) not yet coded. %ven when all the referenced objects are available,
they should be allocated (memory) resources only if the object is actually
used, without the user predicting the actual usage before orogram execution.

The dynamic linker must not seriously degrade other cansabilities of the
system, e thave taken care to accommodate (hut not require) ime-core sharing
of (nure) nrocedures and data, mixed languaqes in a orocess, a €lexible tile
system, and a security kernel structure (5] for the operating system. Pro-
gramming generality is preserved in that a (dynamically linked) external
reterence can %e used whenever an internal reterence can be used.

Finally, we note that onerformance has heen a dominant consideration. It
all nrograms were interoreted rath:: than translated we clearly could simulate
the Multics hardware suopnort for dynamic linking; however, for reasons of per-
formance we have not chosen the interoreter aonroach. Nur major pertormance
objective has been to reduce to an ahsolute minimum the processing overhead
required for the second and subsequent references to an external object. “uch
more processing is required for the tirst refereﬁce that must, of coourse,
create and save (for subsequent references) the intormation on the bindinmg
trom symbolic reference to virtual address. The comnletion of this tirst

reterence is at the heart of dynamic linking.
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IT1. BASIC CONRPTS FOR DYNAMIC LINKIVYG

Nynanic linking alwavs occurs during the execution of a nrocedure in the

address space of a 9rocess. [t results trom the symholic reference to an

(exnlicitly declared) external nrocedure or data object. Nynamic linking
H imolicitly requires the notion of a segment, i.e., a logical groun of intorma- 4
tion (external object) that retains distinct attributes (e.g., symholic name) 1
for the life of the process. Although hardware segmentation is not mandated,

each segment has an identifier (unique in each nrocess) that we will call the

i seqment number. A segrment numher and an offset within the segment constitute
a virtual address that can be used to reference a svecific location.

n a nrocedure's tirst reference (in a orocess) to an external object
the dynamic linker, with support from the operating system, computes the vir-
tual address corresponding to the symbolic reterence. The linker stores this

binding in what we call a link. We then say the link is "snanved”, and suhbse-

quent references are made through this snaooed link without use of the linker.
i
: } e will next examine concentually the tunctions and data bases that make up

the linker, and the rationale for them,

-

{ ) A, External Procedures

Zonsider what haovens when a orocedure segment <Caller> executes the

PP

first reterence in a nrocess corresponding to the source statement:

e an—a
-

CALL Tarqget

<Caller>'s object code is typically envisioned as containing:

CALL (virtual address of the entry into <Target>) 48]

at the time of execution. “owever, until <Targec> is linked this is not
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teasible, since its virtual address is not kXnown. We might alternatively con—-
sider translating the source into

7ALL <Linker> ("Target”) (”

where <Linker> is a arocedure seqment that calls on the underlying oneratim
system to tind the virtual address ot the entry tor the seqment named "Tar-
qgec”,

Atter determining the virtual address of <Target>, the linker oould
"snap the 1link" by overwriting statement (2) in <Caller>'s object code with
statement (1), a call to the <Tarqet>. This is essentially what 1is done in
the traditional (static) linking loader (1). 'lowever, to do this dynamically
tor A running orogram makes <Caller> impure, in violation ot our design cri-
teria. To address this we tollow the Multics (4] examnle, introducing the
concent of a linkage segment and a linkage pointer that noints to the section
(linkage table) in it for <Caller>.

Svery process has a distinct (never shared) linkage table which contains
an outgoing link tor each external reterence by <Taller>. The outjoing link
tor the reterence to <Target> can be at a tixed ottset (at translation) from
the linkaqe nointer. Thus the ohject code of the nure nrocedure <Taller> can
he of the torm:

CALL (Linkage nointer + <Target> link oftset) N

The outgoing link is desiqned to inwoke <Linker> on the first reference with
something similar to statement (1) above. The linker then modities (i.e.,
snans) the ontgoing link to invoke <Tar7jet> on suhsequent reterences.

It might seem that the snaoned link should merely be ot the torm ot
statement (2) above. “owever, a signiticant »roblem arises. Atter the

transfer of control to <Target> we, of course, exvect the linkaqe nointer to
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noint to the linkage table tor <Target>, not <Caller>. ‘ntortunately, the
(nure) code of <Tarjet> cannot nroperly load the linkage oointer, because the
adnrooriate virtual address 1is unknown at translation time. Theretore, the
linker includes in the linkaje table of <Target> an incoming link for the
sntry to <Tarqget>. Thus the proner form for the outgoing link from <Caller>
is:

CALL (<Tarqget> incoming link) (M

This snaoned incoming link contains a statement to load the linkaje nointer,
tollowed Yy the form of statement (1) to invoke <Target>. This comnletes the

invocation and Aynamic linking of the external nrocedure <{Tarqetd.
B, €©xternal Nata

An external data reference has many similarities to the above. Consider
the reterence in <Caller> corresmonding to the source statement:

rointer := ADNRRSS (Nata)

The pure code in <Caller> will be very similar to statement (3) for the same
reasons; in oarticular we exvect the torm:

CALL (Linkage oointer + <Nata> link offset) (5)

The unsnaoned link in <Caller>'s linkage table will be similar to state=-
ment (2) for procedures. In varticular the form

CALL <Lin%er> ("Data") ("

will invo%e the linker to obtain the virtual address of <Natad> and snan the
link. The snaomed link is much simnler than for nrocedures. 'Je need some-
thing of the form:

RETIN (virtual address of <Matad>) (N
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This comnletes the raference to and dynamic linking ot the external data seq~

mant.

IT1I. THE VMITROCOMEIITER DYNAMIC LINKFR D9SIN

3, The Stens in Sstablishing a Link

Having examined the hasic conceots of a dynamic linker, we will now
investigate the features ot a design for its realization. "nce again the
stens (Fiqure 1) necessarv to dynamicallv link some external orocedure <Tar-
qet| entry name> (1) to orocedure <Zaller> will he tollowed, hut emnhasis will

be nlaced on design details vice linking concents.
1. TInvoking the Linker

When <Caller>'s source code is translated, any external reterence to
<Target> will bhe translated into code which transters the execution noint to
an outgoing link in <Taller>'s linkage table (Taller.link). Translated code
will wvary trom system to system; however, concentually we desire to have a
nure wonrocedure (<Caller>'s object code) call some imoure orocedure
(Caller.link). This will allow us at some later point in the linking 2rocess
to convert the initialized outyping link in raller.link from code which
inwokes the linker to code which will result in the invocation ot <Tarqgetl|
entry _name>.

“e have mentioned that the outjoing link is initialized to inwke the

linker. ne method to do this would be tor the outyoing link to nroduce a

(1) Sntry name repnresents a label within <Tarqet> which can He reterenced by

an external orocedure. An entry noint is an ottset within <Target> associated
with some entry name.

G At D DRSSO e

o L g




afqeyl —
2pO0D ar1qeandaxy \\\\

. §d0udx939x juanbasqns
‘ 103 abexo3zs uorjzewzrozul

SUoT3Tsueay] teoybhon

aneyN AziugliaSzer ;o

y3xANI1

13622y 30

* x3gany 3udubas
‘m e W N
: NN
AN
o NN -
wl® " N 3wey Lxyuziaializs ;o
o= [ . ~ oy
3 < \ « §SIppe TENIita
Ve Gl S e e e e -
rY ) N\ >
A > = B
sl e Qfc \ .
sl B D= /
olea nLe \
W wic
agey aln . k
K2qua ss250® ° m \
\ ANITTI3C4vD

KXS° 13I0¥YL J x

©

; “ o
=) lo~
suen /fi3u oo

w. R 433Ul 1 <
I B -
] 1Y E
Z 22
. 2 UG

e

-

strroquls

32 3as330

¥uty dutaSans

43ANLE

N natn - Cae - 0l N et e < amm e -

*aweyN Aijug|3labaeyg 2anpasoad ay3z o3 Yuyy ayz bHuyddeus 103 sjusad 3o @ouanbegs - [ -H74

Ss83Ippe (TrizTa }

—

.“—— r',

O e

r—

e




A ——— g T ——

hardwvare tault which will inwoke the linker as a ¢€ault Hhandler. (This
renresents the most qdeneral of the methods available and is th2 method used in
Multics.) HYowever, barring this canability, the linker mav be invoked via a
Airect Jjump in the outgoing link, In hoth these methods the linker would be
nassed the oftset of the svmholic name <Tarqet!| entry _name> in <7aller>'s sym~
holic name tahle (Caller.sym). (An object's symholic name tabhle stores the
symbolic names of all external references in a nrocedure. Additionally it
will be used to retain entry names and their associated entry points utilized
within the orocedure.,) A third mechanism to invoke the linker {s via an
exnlicit call in <Caller>'s source code nassing to the linker the symbolic
name of the ohject to be linked as a actual narameter. (This reoresents a

svecial case which will be discussed later.)
2. Snaoping the Link

The question naturally arises of how the linker knows where <Zaller.svm
is located., ‘e have nrovided a mechanism to resolve this problem by placing
the virtual address ot an ohject's symbolic name table in a theader in the
object's linkage table. (We can always find an object’s linkane table since
we nronose to store a ovointer to it in a linkage address tahle.) Thus the
linker can access the <Target! entry name> by utilizing the virtual address ot
the symbolic name table (from the linkage table hYeader) and the ottset it was
nassed as a formal parameter.

The linker will then 2ass the symbolic name <Tarqet> to a module in the
supervisor called the address snace manajer (which will be discussed in more
detail later). At this point we will consider the address swmace manajer a
routine which, when nassed a symbolic name, enters the object associated with

that symolic name in the . address snace of the executing nrocess and returns




to the linker the segment numher assigned to that object.

Now that we know the seqment numher of <Target>, we Can qenerate a Ccom=
nlete wvirtual address tor <Tarjet| entry name> by accessing the entry point
into <Tarqet> associated with 'entry name'. Recall that the symolic name
table of an object contains not only the symholic names of external reter-
ences, but also entry names (and their associated entry moints) into the
ohject. Thus {f we can access Target.sym we can £ind the entry moint associ-
ated with 'entry name'. Wwhen the seqment number of <Target> is returned to
the linker, the linker will construct a linkage tahle for <Target> (if one
does not already exist) to allow <Target> to engaqe in dynamic linking. Since
the header of Tarjet.link contains the virtual address of Tarqget.sym, we can
tind the entry noint corresmonding co 'entry name’.

We now have a virtual address (ot the torm <segment nuaberl|
entry_point> and could invoke <Tarjet| entry name> at this voint. H“owever,
we would like to retain this virtual address to simnlity subsequent invoca-
tions of <Tarjet! entry name>. We can accommlish this qgoal by storing the
virtual address ot <Target| entrvy_name> in Target.link. An incoming link has
been set aside for this nurpose and we can transter control to this incoming
lin% on subsequent calls by renlacing the jump to the linker tound in the out-
Joing link (in Caller.link) with a jump to the incoming link (for <Tarqgetl|

entry name>). Thus subsequent calls will tollow the sequence shown in Fiqure

”

Recall that the linkage oointer is used to indicate the start of the
currently executing odrocedure's linkaje table. Thus when we start executimg
in <Target>, we want the linkaje nointer to noint to Target.link. The incom=
ing link for <Tarqet! entry name> will he used to set the linkaje oointer

(nrior to transterring control to <Target!| entry named), This implies that
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when <Caller> calls an outqgoing 1link the linkaje oointer (which nmoints to
i naller.link) must be saved and furthermore must be restored when the orocess
execution ooint returns trom <Tarqget> to <Taller>. This may be done automati-

cally by the hardware CALL/RETIRN sequence or exolicitly by the object code in

<{Caller>.

3. Linking Data

The stens to link data differ slightly from those for 1linkingy oro-
cedures. Fundamentally, data is not executed and does not, therefore, have
the canability to initiate dynamic linking. Thus it <Caller> were to reter-

ence some data object, <Matal entry name>, instead of inwoking <Natal entry-

i name> all we really want to %now is its virtual address. 'e therefore Drooose
s that when snapoed, the outgoing link tor <Natal entry name> will load some
| pointer register with the virtual address of <Matal entry name> and then

A i recurn to <Caller>. The sequence tor subsequent references to <NDatal entry

name> is shown in Tiqure 3.

; We note that the use ot entry names within data immlies that the data

must underjo a translation and have a symholic name table and linkaqe table.

e ——

These two items may be merged into one structure since the data linkage table

consist of a header which (at this point) only contains a 2ointer to the data

symbolic name table.

e e
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a. 'Inlinking

In a microcomouter environment, there may exist a limited number of seqg-
ments availahble tor use hy a nrocess (2). To nrovibit this from limiting the
size of programs, we may choose to unlink ohjects trom an address smace in

order to allow the dynamic linking of new ohjects to the nrocess.

1. Fundamentals of 'Inlinking

Concentually unlinking is a trivial nrocess hut may include oictalls
which must he taken into acoount. To unlink, an object is selected for remo-
val, the ohject's entry in the linkage address table is erased, and all outgo=-
ing links to the object are reset to their presnapoed format. This imnlies
two major voints. First, any data required to reset an outgoing link must
either be accessible by some means or stored in the outgoing link itself,
Secondly, we must be able to find each snapned, outgoing link. It is nronvsed
that a linked list of outqgoing links reterring to an ohject be formed with a
ovointer to the start ot this linked list stored in the object's linkage table
header. Thus, in the trivial case, unlinking an objact consist ot erasing the
object's entry in the linkage address tahle, resetting each outjoing 1link in

the object's linked 1list, and £inally deleting the object and its linkage

table from the process address space.

2. Resolving Addressing in the Combined Linkage Ta%le

Recall that we said there were pitfalls involved in unlinking. These

arise trom how an object's linkage tahle is entered in a nrocess address

(?) As an examnle, the 28100 microprocessor (71 with one “emory Manajement

Infc allows a maximum of 54 seqments, some ot which must be assigned to the
overating system,

14
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smace, Nbhserve that it we are concerned with unlinking, there are not ade-
quate seqments available to assign each linkage table a unique seqment nunber.
It is prooosed that in such an anvironment, individual linkaje tables e com=
hined into a single seqment which we will call the combined linkaqe table,

“ven thouth the combined linkage table conserves segients, it creates
addressing oroblems which must be taken into acocount. 1t, when removing a
Adeleted object's linkage table from the combined linkaje table, a cowdaction
ot the comhined linkaje table is performed, some remaining linkaje tables may
be relocated.

This relocation requires the following three addressing »roblems be
resolved: (1) a relocated linkage tahle must have its entry in the linkanqe
address table undated, (2) outgoing links which transter control to an incom=
ing link in a relocated linkage table must be uodated, (3) nodes of an
(unlinker) linked list mointing to outgoing links in a relocated linkaje tadble
must be uodated.

A tourth addressing oroblem which must be resolved inwlves the removed
object's linkaje table. Rach outgoing link in this linkage table is a node in
a linked list and must be deleted trom that linked list onrior to removing the
linkaqe tahle trom the process address svace. (We note thatc a doubly linked
or circular linked list of outgoing links is helotul in resolving these last

two addressing »roblems.)

3. Selecting an NHbject for Removal

A hriet comment is in order concerninj the selection ot an object tor
removal. A nrocedure cannot b unlinked and removed from the address snace it

it has a current activation record since this would hreak the inteqrity of the

return sequence from a series of one or more nrocedure calls, Theretore a




mechanism must “e develooed to test tor this condition orior to selecting an
object for removal. This immlies, tor examole, that the initial orogram can—

not be unlinked since it is always either executing or in the return sequence.

V. SYSTM g/jopnRr

We should now like to briefly discuss operating system suoport for
dynamic linking. It is felt that the capabilities discussed either already

exist or are immlementahle in most Mmicrocompiters.

A. The Address Snace Manaer

The address space mana‘jer serves as an interface hatween the dynamic
linker and the overating system. 1t will call on ile System Management and
(in some cases) Memory Management to obtain data which allows it to convert
the symolic name of an object into an addressable entity. 4aving done this,
the address space manager will save this data in a table (which we will call
the nrocess reterence tahle) to nrevent unnecessary invocations of onerating
system routines for subsequent request to make an object addressable by a oro-
cess. W“e note that the nrocess reference table is a 'nmer nrocess' data struc—
ture and each object entered in it has a unique set of attributes (such as
seqment nunber, access rights, etc.) with resoect to that nrocess.

When nassed a symbolic name, the address space manager must be able to
access the object associated with that symbolic name in order to make the
object addressable by the orocess. The address space manager will return to
the dynamic linker a unique nrocess-identifier associated with that ohjece.

This ohject identifier has been assumed to be the seqment nunher assignad to

the object, however conceptually all an object identitier must do is to allow




the linker (and the user nrocess) to address the object in some fashion.

3. Translator Sumport

Recall that the linker, usingy some format or temnlate, must huild a
linkane tahle tor each object when that object is entered in the nrocess
address snace, The existence of this temmlate and additionally, the existence
ot the symholic name table, immly that the translator used must supmort
dynamic linking by not only translating external reterences and recognizing
entty names, but also by constructing a linkage table temnlate and svmbolic
name tahle tor the translated object. As will he shown, it is reasonable to
assume that a translator can he designed (or moditied) with this capability
since, in jeneral, all data necessary to construct these two items is either

easily commutavle or available in the translator's symhol table.

1. The Symholic Name Table

The symholic name tahble (Figure 4) contains an entrv for each unique
external reference and entry name. 1In addicion, the linkage table oftfset of
the corresnonding link (i.e., outiny and incoming links) for each symholic
name tahle entry should be stored with that entry. We note that this is man-
datory for entry names; however, tor external reterences, the addition of the
(out1oing) link offset is only convenient since it removes the requirement for
the linker to store this information.

Tt is reasonable to ask where the symholic name table is located in a
nrocess arddress snace. Recall that tor the data object <Nata>, we have suj~
gosted that Nata.sym hHe anpended to Nata.link. (This immlementation allows
<Nata> to be based at offset zero and to qrow dynamically.) e could use this

solucion for a orocedure also; however, since the symholic name tahle does not

j
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chanqe, a separate cony tor each Jrocess is not needed. A reasonahle solution

theretore would be to an%end the symholic name tahle to the end of a (nure)

nrocedure's ohject code,
2. The Linkaqes Table Temnlate

The linkane tahle temnlate (Fiqure 5) should retlect the exact format of
an initialized linkage tahle with one excention. We Yave stated that the
header of a linkaje table contains the virtual address of that object's sym-
bolic name table vyet at translation time the segment numher of the symbolic
name table is unknown. Theretore, we must construct this virtual address when
the linkaje tabhle of an ohject is built. T1f the symbolic name table is a »art
of the object code, its virtual address can be comuted (qgiven we know the
ottset of the symholic name table in the object code) when the object's seqg-
ment number is obtained from the address smace manager. Tf the svmbolic name
tahle is a oart of the linkage table, we can ohtain the linkaje tahle segment
numbher via the linkane address table.

Notice that the header of Fiqure 5 includes an entry reflecting the size
of the linkane table. This renresents usetul information it an unlinker is
immlemented (by nroviding the unlinker with the size of a linkaje table to be
removed) and may orovide usetul data when loading a linkadje table in a »rocess
address soace.

By building the symbolic name table tirst, the construction of the “wdy
of a temnlate hecomes quite trivial for the translator. "e note that there is
a one-to-one manning between entries in the linkane table and the gyrbolic
name table, Theretore the temnlate can he easily constructed hy scanning the
symbolic name table and initializing a link comdatible with each oarticular

symholic name table entry. As each link is inicialized, we can also enter its

19

et s s ot s e W?gﬂ,w’ R
- . el ?




!
!

>

»
g
o«

-~

s 0 0 00 o

—~ - N - M - -
SN ALl iy I
s, - * - A - . *

N -t ‘ v T !

- o — - — T — ——— ———— 4 - ———

"
3
+
3
i
"
+ s
3 ‘ L
,
e
e
»
i
va

| o - - - ——— = —— e~ —

20




e o 4 0508 % ST s

. — Sy, <P ———— -

Y

link ottset into its resnective symholic name table entry.

It is reasonahle to ask where in a system the linkage tahle temnlace
should he located. 1t is suqjested that unless demand »aqing is available, a
senarate tile tor the temnlate he created. This will allow the construction
ot a linkage tahle without requiring that the temnlate be entered in a nrocess
adiress smace. In a demand nmaqing environment, the linkage tahle temwlate can
he a pnart of the object code and once it has been utilized to construct the
linkane table, it will he 'maged out' of main memory since it will not he

turther reterenced.

7. Process Initialization

Much work by Janson (8,91 has been dewted to nrocess initialization
including a commlete descrintion of how the Aynamic linker and the overating
system are linked in a nulti~domain enviromment. Nur design has been quided
Yw these results. It should e noted that orocess initialization must include
the nrocess reterence table and linkags address table., 'With respvect to a
uset's oprogram, Dprocess initialization in a dynamic linkim environment
di€fers only in that the linkane tahle for the user orogram must be entered in
the Dprocess address snace and the linkaje nointer initialized orior to com=

mencing oroqgram execution.

V. LINKING WITHOT TRANSLATIR S'JPPORT

Yaving irmlied that translator suooort is necessary to realize dynamic

linking, we would like to sumarize an implementation i{n an environment where

this condition does not hold; the implementation details have heen qgiven else-

where [10]. 1t is felt that a linker in this environment should meet certain
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tundamental requirements. wirst, we would like to use the same dvnamic linker
to link both (translator) supnorted and unsupnorted objects thus requiring
onlv on2 linker and additionally allowing a nrocess to utilize %Yoth object
tynes. Also, we do not wish to have to exnlicitlv declare in our source code
an external object to be suonorted or unsummorted since, it that obhject is
recranslated with a type change (e.q., unsupoorted to supnorted), all nro-
cedures referring to that ohject would have to he retranslated also. (This
implies that the linker must 5e able to ditferentiate between supnorted and

unsuooorted objects.)
A. The Intertace Module

Recall that we have oftered an exolicit call to the linker in a
orocedure’s source code as a mechanism for linker inwocation such as
ZALL <LINXD> (Target)
In this examole, <LIN is a mdule which is statically linked to a orocess
and serves as an intertace between the nrocess and the dynamic linker. Zon-
centually, <LINY> must carry out those functions which, in a (translator) su»=

norted system inwlve the translator.
3. Linking 'Insupmorted dhjects

We will now investinate the steons necessaty to link the unsummorted
object <Target> to the unsupported orocedure <Caller> (Tiqure 5).

“hen <LTMK> is called it will enter <Target> in the next free location
in “aller.sym and will build an initialized outqoing link tor <Target> in
Taller.link. (Tf <Target> already has an entry in naller.sym, it also has a
snanded link and all chat is required is to execute the snanped link.) <LV

will then load <Target>'s parameters into the system according to translator
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conventions and execute the outjoing link.

“hen the linker identifies <{Tarjet> as unsummorted, it will cause a
hlock ot virtual memorv to He allocated to serve as Target.link and Tarqet.svm
(since <Tarqget> has neither a svmholic name tahle nor linkage tahle temnlate).
nce Tarqget.link and Tarqget.svm have been initialized, the linker will enter
<Target> as the only entry name in Target.sym and cormlete the link by snan-

ping the incoming link in Target.link (provided <Target> is a orocedure).
<. The Intertace Linkaje Pointer

We canmot exwect that an unsumnorted translator will know that the link-
aje nointer hardware register is not available for general use and theretore
must assume that it cannot be used to voint to the linkage tahle of an execut-
ing unsupnorted orocedure. We theretore propose that an interface linkage
oointer be established (in software) by <LINX> to duolicate the functions of
the hardware linkaje oointer.

We should like to ohserve two immortant noints., Tirst, the inocoming
link to <Target> must set the interface 1linkage oointer to »oint to
Tarqet.link vice the hardware linkajge pointer. Seocond, if a orocess executes
hoth suprorted and unsupoorted nrocedures, the first nrocedure executed must
he sumnorted since this ensures that the hardware linkage nointer is saved

betore it can be subject to 7jeneral use by an unsupnorted nrocedure.
N. The Nisadvantages ot 'Jnsuomorted Dynamic Linking

There are four major disadvantages when 1linking in an unsupnorted
anvironment. To begin with, subsequent reterences to a linked object will he
executed much slower than in a suopported system since housekeeoning tunctions

associated with 1linking are carried out hy sottware routines vice object
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{machine) code. Secondly, we have not nrooosed a mechanism to nass external
nrocedures to subroutines as actual narameters. A thirAd disadvantane relates
to multinle entry ooints. Since the identitication of entty names and ctheir
associated entry moints requires translator summort, an unsumorted obja2ct can
only he accaessed at one entry moint (viz., its starting location). A tourth
disarlvantage is that external data will be limited to a hased variable similar
to those found in °PL/T or PLM since <LINX> can only return to the noint of

call a pointer to the external data.

VI. HYARDWART IMPLICATINNS

Having discussed the desiqn of a dynamic linker to execute on currently
available microprocessors, we would like to examine hardware teatures which
are advantareous in a dynamic linking environment. The hardwate features Adis-
cusserd can %“e classified into two qeneral grouns: those which inftluence the
dasiqn of the Aynamic linker and those which affect the system nertformance Yw

indroving =2xecution snead,

A, "lardvare Teatures Atfecting Linkiny NDesign

“le will discuss four hardware teatures which aftect the desitn ot a
dynanic linker. To beqin with, th2 ahility to inwke the linker via a
hardware fault ensiures that a commletely Jeneral desiqn can be irmmlemented,
without this canahbility, a link mist he snamed when external data is onassed
as an actual narameter to a subroutine (viz., when the call 1is executed),
immlvinry that a link may be snaoned nrior to first reterence. The second
desirable “ardwvare feature inwlves the cadahility to reterence external

objects via indirect addressing. 1t this teature exists, snaoned outqoing
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links are simoly virtual addresses for indirect addressing instructions.
(Multics utilizes indirect addressing and a linkane fault on indirection in
the implementation of its dynamic linker 15).)

A third influencing teature involves the size of (hardware) virtual
memory. e note if an adeqate numher of segments exist (assuming each seq~
ment is of reasonahle size), it may not he necessary to imnlement an unlinker.
(e can always conserve seqment numbers by combining smaller objects into one
setent orior to execution and reterencing each object via an entry noint.)
The final feaéure has already been mentioned and is the ahility to save and
restore the linkage pointer as a nart of the microorocessor's CALL and RFTIN

conventions.
3., Performance Tonsiderations

Along the lines of system nertormance we will discuss two hardware
teatures: the hardware relocatabhility of code and hardware seqmentation,
These are suonorted by modern microsrocessors such as the Zilog 2397 (71 and
the Intel 3N34 successor [11].

With resnect to hardware relocatahility, we note that one must have
relocatahle nrocedure segqments to imnlement a Aynamic linker since at the
start of proqgram execution, there exist no hindings bhetween odrocedures and
nrocess virtual addresses. Theretore, the more etticiently nrocedures can he
relocated (viz., hardware relocation), the better system pertormance will be,

We have maintained chat a dynamic linker can %Y%e imolemented without
hardwate seqmentation as long as individual objects can be reterenced as logi-
cal entities (i.e., segments). This imnlies that many tunctions intrinsic to

a segmented system must be available in a dynamic linking environment. It is

only logical, theretore, to conclude that it is advantageous to have hardware




seqmentation. In onarticular, the in—-core sharing ot ohjects (e.q., nure nro-
cedures) in a multinrograming environment is extremely ditticult to implement

withoutr the sunnort ot hardware seqmentation.

TII. CONCUIISTINS

We have nresented a design that i{llustrates the feasihility of dynamic

linking in a microcomduter enviromment. "e have shown that there are only

] . modest demands on the summorting lanquaje translators, oneratiryy system, and
hardware. M the other hand, the design is not in conflict with the more

sonhisticated, state-ot-the-art camabilities that can be exoected tor micro-

- A— o

comnuters of the tuture. Furthermore, the certormance cost is quite moderace:
the onerations tor the first reference ate essentially those of the tradi-
tional 1lin%ing loader. Subsequently we require about three additional
instructions oer external call and about two w»er external data teterence.
] ‘ | Thus, we conclude that it is possible and oractical to include the substantial

henetits ot dynamic linking in the set of canab%ilities tor nresent and tuture
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